viernes, 22 de abril de 2011

CONVERTIR TANTO POR CIENTO A DECIMALES Y VICEVERSA

Se debe recordar siempre que un por ciento significa un centésimo. Lo dice la palabra misma: por ciento es por cien, se está comparando con cien: si 15% de la populación son ancianos, significa que 15 personas de cada cien son ancianos.
1% es un centésimo ó 0.01 4% es cuatro centésimos ó 0.04 12% es doce centésimos ó 0.12 89% es 89 centésimos ó 0.89 100% es cien centésimos ó 1 145% es 145 centésimos ó 1.45
Convertir un número decimal en tanto por ciento
Si tiene un número decimal, sólo se observa cuántos centésimos tiene.
Por eso se debe entender que la primera cifra decimal después del punto significa los décimos, y la segunda cifra después del punto significa las centésimos.
0.08 tiene 8 centésimos o 8% 0.2 no tiene dos cifras decimales; entonces pongamos un cero en la segunda cifra decimal: 0.2 es igual a 0.20. entonces tiene 20 centésimos o 20%. 1.1 también pongamos un cero en la segunda cifra decimal y es 1.10 Es más de uno; tiene más de 100 centésimos; 1.10 tiene 110 centésimos; y es 110%. 0.495 tiene tres cifras decimales. Cuando se convierte a tanto por ciento, el
porcentaje tendrá un punto decimal. 0.495 tiene 49 centésimos; y un medio centésimo además. Por eso 0.495 es 49 1/2 % o normalmente escribimos 49.5% 0.3829 es 38.29% 1.078 es 107.8%

NOTACIÓN CIENTÍFICA

La notación científica (o notación índice estándar) es un modo conciso de
representar un número utilizando potencias de base diez. Los números se
escriben como un producto: a · 10k, (siendo a un número mayor o igual que 1 y
menor que 10, y k un número entero). Esta notación se utiliza para poder
expresar fácilmente números muy grandes.
La notación científica utiliza un sistema llamado coma flotante, o de punto
flotante en países de habla inglesa y en algunos hispanohablantes.
Escritura

  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1 000
  • 104 = 10 000
  • 105 = 100 000
  • 106 = 1 000 000
  • 107 = 10 000 000
  • 108 = 100 000 000
  • 109 = 1 000 000 000
  • 1010 = 10 000 000 000
  • 1020 = 100 000 000 000 000 000 000
  • 1030 = 1 000 000 000 000 000 000 000 000 000 000
10 elevado a una potencia entera negativa –n es igual a 1/10n o
equivalentemente a 0, (n–1 ceros) 1:

  • 10–1 = 1/10 = 0,1
  • 10–2 = 1/100 = 0,01
  • 10–3 = 1/1 000 = 0,001
  • 10–9 = 1/1 000 000 000 = 0,000 000 001

Por tanto, un número como: 156 234 000 000 000 000 000 000 000 000 puede ser escrito como 1,56234×1029,
y un número pequeño como 0,000 000 000 000 000 000 000 000 000 000 910 939 kg (masa de un electrón) puede ser escrito como 9.10939×10–31kg.
Por ejemplo, la distancia a los confines observables del universo es ~4,6·1026m y la masa de un protón es ~1,67·10-27 kilogramos. La mayoría de las calculadoras y muchos programas de computadora presentan resultados muy grandes y muy pequeños en notación científica; los números 10 generalmente se omiten y se utiliza la letra E para el exponente; por ejemplo: 1,56234 E29. Nótese que esto no está relacionado con la base del logaritmo natural también denotado comúnmente con la letra e.
La notación científica es altamente útil para anotar cantidades físicas, pues pueden ser medidas solamente dentro de ciertos límites de error y al anotar sólo los dígitos significativos se da toda la información requerida sin malgastar espacio.
Para expresar un número en notación científica debe expresarse en forma tal que contenga un dígito (el más significativo) en el lugar de las unidades, todos los demás dígitos irán entonces después del separador decimal multiplicado por el exponente de 10 respectivo.
Ejemplo:
238294360000 = 2,3829436E11 y 0,000312459 = 3,12459E-4.
Operaciones matemáticas con notación científica
Suma y resta
Siempre que las potencias de 10 sean las mismas, se debe sumar las mantisas, dejando la potencia de 10 con el mismo grado (en caso de que no tengan el mismo exponente, debe convertirse la mantisa multiplicándola o dividiéndola por 10 tantas veces como sea necesario para obtener el mismo exponente).
Ejemplo:
2·E104 + 3·E104 = 5·E104 (E SE REFIERE A EXPONENTE)
Para sumar y restar dos números (o más) debemos tener el mismo exponente en las potencias de base diez. Tomamos como factor común el mayor y movemos la coma flotante, en los menores, tantos espacios como sea necesario, elevando los correspondientes exponentes hasta que todos sean iguales.
Ejemplo:
2·E104 + 3·E105 - 6·E103 (tomamos el exponente 5 como referencia)
0.2·E105 + 3·E105 - 0.06·E105
3.14·E105
Multiplicación
Se multiplican los coeficientes y se suman a la vez los exponentes.
Ejemplo:
(4·E105)· (2·E107) = 8·E1012
División
Se dividen las mantisas y se restan los exponentes (numerador-denominador).
Ejemplo:
(4·E1012)/ (2·E105) =2·E107
Además se pueden pasar los dos números al mismo exponente y luego nada más multiplicar.
Potenciación
Se potencia la mantisa y se multiplican los exponentes.
Ejemplo:
(3·E106)2 = 9·E1012
Radicación
Se debe extraer la raíz de la mantisa y dividir el exponente por el índice de la raíz:
Ejemplos:

DEFINICIÓN Y OBJETO DE LA ESTADÍSTICA

Historia de la Estadística
Los comienzos de la estadística pueden ser hallados en el antiguo Egipto, cuyos faraones lograron recopilar, hacia el año 3050 antes de Cristo, prolijos datos relativos a la población y la riqueza del país. De acuerdo al historiador griego Heródoto, dicho registro de riqueza y población se hizo con el objetivo de preparar la construcción de las pirámides. En el mismo Egipto, Ramsés II hizo un censo de las tierras con el objeto de verificar un nuevo reparto.
En el antiguo Israel la Biblia da referencias, en el libro de los Números, de los datos estadísticos obtenidos en dos recuentos de la población hebrea. El rey David por otra parte, ordenó a Joab, general del ejército hacer un censo de Israel con la finalidad de conocer el número de la población.
También los chinos efectuaron censos hace más de cuarenta siglos. Los griegos efectuaron censos periódicamente con fines tributarios, sociales (división de tierras) y militares (cálculo de recursos y hombres disponibles). La investigación histórica revela que se realizaron 69 censos para calcular los impuestos, determinar los derechos de voto y ponderar la potencia guerrera.
Pero fueron los romanos, maestros de la organización política, quienes mejor supieron emplear los recursos de la estadística. Cada cinco años realizaban un censo de la población y sus funcionarios públicos tenían la obligación de anotar nacimientos, defunciones y matrimonios, sin olvidar los recuentos periódicos del ganado y de las riquezas contenidas en las tierras conquistadas. Para el nacimiento de Cristo sucedía uno de estos empadronamientos de la población bajo la autoridad del imperio.
Durante los mil años siguientes, a la caída del imperio Romano, se realizaron muy pocas operaciones Estadísticas, con la notable excepción de las relaciones de tierras pertenecientes a la Iglesia, compiladas por Pipino el Breve en el 758 y por Carlomagno en el 762 DC. Durante el siglo IX se realizaron en Francia algunos censos parciales de siervos. En Inglaterra, Guillermo el
Conquistador recopiló el Domesday Book o libro del Gran Catastro para el año 1086, un documento de la propiedad, extensión y valor de las tierras de Inglaterra. Esa obra fue el primer compendio estadístico de Inglaterra.
Aunque Carlomagno, en Francia, y Guillermo el Conquistador, en Inglaterra, trataron de revivir la técnica romana, los métodos estadísticos permanecieron casi olvidados durante la Edad Media.
Durante los siglos XV, XVI, y XVII, hombres como Leonardo de Vinci, Nicolás Copérnico, Galileo, Neper, William Harvey, Sir Francis Bacon y René Descartes, hicieron grandes operaciones al método científico, de tal forma que cuando se crearon los Estados Nacionales y surgió como fuerza el comercio internacional existía ya un método capaz de aplicarse a los datos económicos.
Para el año 1532 empezaron a registrarse en Inglaterra las defunciones debido al temor que Enrique VII tenía por la peste. Más o menos por la misma época, en Francia la ley exigió a los clérigos registrar los bautismos, fallecimientos y matrimonios. Durante un brote de peste que apareció a fines de la década de 1500, el gobierno inglés comenzó a publicar estadísticas semanales de los decesos. Esa costumbre continuó muchos años, y en 1632 estos Bills of Mortality (Cuentas de Mortalidad) contenían los nacimientos y fallecimientos por sexo. En 1662, el capitán John Graunt usó documentos que abarcaban treinta años y efectuó predicciones sobre el número de personas que morirían de varias enfermedades y sobre las proporciones de nacimientos de varones y mujeres que cabría esperar. El trabajo de Graunt, condensado en su obra Natural and Political Observations... made upon the Bills of Mortality (Observaciones Políticas y Naturales... hechas a partir de las Cuentas de Mortalidad), fue un esfuerzo innovador en el análisis estadístico.
Por el año 1540 el alemán Sebastián Muster realizó una compilación estadística de los recursos nacionales, comprensiva de datos sobre organización política, instrucciones sociales, comercio y poderío militar. Durante el siglo XVII aportó indicaciones más concretas de métodos de observación y análisis cuantitativo y amplió los campos de la inferencia y la teoría Estadística.
Los eruditos del siglo XVII demostraron especial interés por la Estadística Demográfica como resultado de la especulación sobre si la población aumentaba, decrecía o permanecía estática.
En los tiempos modernos tales métodos fueron resucitados por algunos reyes que necesitaban conocer las riquezas monetarias y el potencial humano de sus respectivos países. El primer empleo de los datos estadísticos para fines ajenos a la política tuvo lugar en 1691 y estuvo a cargo de Gaspar Neumann, un profesor alemán que vivía en Breslau. Este investigador se propuso destruir la antigua creencia popular de que en los años terminados en siete moría más gente que en los restantes, y para lograrlo hurgó pacientemente en los archivos parroquiales de la ciudad. Después de revisar miles de partidas de defunción pudo demostrar que en tales años no fallecían más personas que en los demás. Los procedimientos de Neumann fueron conocidos por el astrónomo inglés Halley, descubridor del cometa que lleva su nombre, quien los aplicó al estudio de la vida humana. Sus cálculos sirvieron de base para las tablas de mortalidad que hoy utilizan todas las compañías de seguros.
Durante el siglo XVII y principios del XVIII, matemáticos como Bernoulli, Francis Maseres, Lagrange y Laplace desarrollaron la teoría de probabilidades. No obstante durante cierto tiempo, la teoría de las probabilidades limitó su aplicación a los juegos de azar y hasta el siglo XVIII no comenzó a aplicarse a los grandes problemas científicos. Godofredo Achenwall, profesor de la Universidad de Gotinga, acuñó en 1760 la palabra estadística, que extrajo del término italiano statista (estadista); Creía, y con sobrada razón, que los datos de la nueva ciencia serían el aliado más eficaz del gobernante consciente. La raíz remota de la palabra se halla, por otra parte, en el término latino status, que significa estado o situación; esta etimología aumenta el valor intrínseco de la palabra, por cuanto la estadística revela el sentido cuantitativo de las más variadas situaciones.
Jacques Quételect es quien aplica las Estadísticas a las ciencias sociales; éste interpretó la teoría de la probabilidad para su uso en las ciencias sociales y resolver la aplicación del principio de promedios y de la variabilidad a
los fenómenos sociales. Quételect fue el primero en realizar la aplicación práctica de todo el método Estadístico, entonces conocido, a las diversas ramas de la ciencia.
Entretanto, en el período del 1800 al 1820 se desarrollaron dos conceptos matemáticos fundamentales para la teoría Estadística; la teoría de los errores de observación, aportada por Laplace y Gauss; y la teoría de los mínimos cuadrados desarrollada por Laplace, Gauss y Legendre. A finales del siglo XIX, Sir Francis Gaston ideó el método conocido por Correlación, que tenía por objeto medir la influencia relativa de los factores sobre las variables. De aquí partió el desarrollo del coeficiente de correlación creado por Karl Pearson y otros cultivadores de la ciencia biométrica como J. Pease Norton, R. H. Hooker y G. Udny Yule, que efectuaron amplios estudios sobre la medida de las relaciones.
Los progresos más recientes en el campo de la Estadística se refieren al ulterior desarrollo del cálculo de probabilidades, particularmente en la rama denominada indeterminismo o relatividad, se ha demostrado que el determinismo fue reconocido en la Física como resultado de las investigaciones atómicas y que este principio se juzga aplicable tanto a las ciencias sociales como a las físicas.
Etapas de Desarrollo de la Estadística
La historia de la estadística está resumida en tres grandes etapas o fases.
Primera Fase: Los Censos. Desde el momento en que se constituye una autoridad política, la idea de inventariar de una forma más o menos regular la población y las riquezas existentes en el territorio está ligada a la conciencia de soberanía y a los primeros esfuerzos administrativos. Segunda Fase: De la Descripción de los Conjuntos a la Aritmética Política. Las ideas mercantilistas extrañan una intensificación de este
tipo de investigación. Colbert multiplica las encuestas sobre artículos manufacturados, el comercio y la población: los intendentes del Reino envían a París sus memorias. Vauban, más conocido por sus fortificaciones o su Dime Royale, que es la primera propuesta de un impuesto sobre los ingresos, se señala como el verdadero precursor de los sondeos. Más tarde, Bufón se preocupa de esos problemas antes de dedicarse a la historia natural. La escuela inglesa proporciona un nuevo progreso al superar la fase puramente descriptiva. Sus tres principales representantes son Graunt, Petty y Halley. El penúltimo es autor de la famosa Aritmética Política. Chaptal, ministro del interior francés, publica en 1801 el primer censo general de población, desarrolla los estudios industriales, de las producciones y los cambios, haciéndose sistemáticos durante las dos terceras partes del siglo XIX. Tercera Fase: Estadística y Cálculo de Probabilidades. El cálculo de probabilidades se incorpora rápidamente como un instrumento de análisis extremadamente poderoso para el estudio de los fenómenos económicos y sociales y en general para el estudio de fenómenos “cuyas causas son demasiado complejas para conocerlos totalmente y hacer posible su análisis”.
Definición de Estadística
La Estadística es la ciencia cuyo objetivo es reunir una información cuantitativa concerniente a individuos, grupos, series de hechos, etc. y deducir de ello, gracias al análisis de estos datos, significados precisos o unas previsiones para el futuro.
La estadística, en general, es la ciencia que trata de la recopilación, organización presentación, análisis e interpretación de datos numéricos con el fin de realizar una toma de decisión más efectiva.
Otros autores tienen definiciones de la Estadística semejantes a las anteriores, y algunos otros no tan afines. Para Chacón esta se define como “la ciencia que tiene por objeto el estudio cuantitativo de los colectivos”.
La más aceptada, sin embargo, es la de Minguez, que define la Estadística como “La ciencia que tiene por objeto aplicar las leyes de la cantidad a los hechos sociales para medir su intensidad, deducir las leyes que los rigen y hacer su predicción próxima”.
Los estudiantes confunden comúnmente los demás términos asociados con las Estadísticas, una confusión que es conveniente aclarar debido a que esta palabra tiene tres significados: la palabra estadística, en primer término se usa para referirse a la información estadística; también se utiliza para referirse al conjunto de técnicas y métodos que se utilizan para analizar la información estadística; y el término estadístico, en singular y en masculino, se refiere a una medida derivada de una muestra.
Utilidad e Importancia
Los métodos estadísticos tradicionalmente se utilizan para propósitos descriptivos, para organizar y resumir datos numéricos. La estadística descriptiva, por ejemplo trata de la tabulación de datos, su presentación en forma gráfica o ilustrativa y el cálculo de medidas descriptivas.
Ahora bien, las técnicas estadísticas se aplican de manera amplia en mercadotecnia, contabilidad, control de calidad y en otras actividades; estudios de consumidores y de mercados; análisis de resultados en deportes; administradores de instituciones; en la educación; organismos políticos, así como en la investigación de las áreas químico-biológicas y económico-administrativas; y sobre todo la estadística es una gran herramienta que permite a las personas para toma d

ESTADÍSTICA DESCRIPTIVA Y ESTADÍSTICA INFERENCIAL

La Estadística para su mejor estudio se ha dividido en dos grandes ramas: la Estadística Descriptiva y la Inferencial.
Estadística Descriptiva: consiste sobre todo en la presentación de datos en forma de tablas y gráficas. Esta comprende cualquier actividad relacionada con los datos y está diseñada para resumir o describir los mismos sin factores pertinentes adicionales; esto es, sin intentar inferir nada que vaya más allá de los datos, como tales, es decir, únicamente los adquiere, los recopila y los organiza. Estadística Inferencial: se deriva de muestras, de observaciones hechas sólo acerca de una parte de un conjunto numeroso de elementos y esto implica que su análisis requiere de generalizaciones que van más allá de los datos. La estadística inferencial simplemente es el procedimiento por medio del cual se llega a las inferencias acerca de una población base en los resultados obtenidos de una muestra extraída de la población, es decir, la Estadística Inferencial investiga o analiza una población partiendo de una toma de muestra.

VARIABLES DISCRETAS Y CONTINUAS

En líneas anteriores se ha señalado que el objeto de estudio de la Estadística son las poblaciones y que estas están formadas por entes o elementos. El número total de los mismos determina el tamaño de la población. Para estudiar una población, lo primero que debe hacerse es observarla de alguna de las formas que ya se ha señalado en las líneas anteriores. Pero observar una población es equivalente a observar sus elementos. Ahora bien, esos elementos poseen una serie de características que son las que realmente se observan. Por ejemplo, el conjunto de todas las empresas industriales radicadas en España constituyen una población. Los elementos de esa población son las empresas. Pero una empresa no se observa en abstracto. Lo que realmente tiene interés son las distintas características de esas empresas, como, por ejemplo, el número de empleados, el volumen de ventas, los costos salariales, los gastos en publicidad, los beneficios de las mismas, la naturaleza de los productos que fabrican, etc.
A todas estas características de los elementos de una población se les conoce de forma genérica como caracteres. Estos últimos, según su naturaleza, pueden ser de tipo cuantitativo o cualitativo. Para el ejemplo anterior, serían caracteres cuantitativos “el número de empleados”, “el volumen de ventas”, “los costos salariales”, “los gastos en publicidad”, “los beneficios de las mismas”, etc., mientras que sería cualitativo “la naturaleza de los productos que fabrican”. Hay que señalar que, en general, cualquier carácter de tipo cuantitativo se puede ofrecer en términos cualitativos. Así, si el número de empleados lo agrupamos en intervalos, se podría hablar de empresas pequeñas, medinas y grandes, siendo ahora el carácter “tamaño de la empresa” de naturaleza cualitativa. De manera similar se podría proceder con los demás. Pero en estadística es más habitual hablar de variables que de caracteres cuantitativos y de atributos en lugar de caracteres cualitativos. Las variables son susceptibles de medirse en términos cuantitativos y a cada una de esas posibles mediciones o realizaciones se les conoce como valores, datos u observaciones.
A su vez, en función del número posible de valores que tome una variable, a las mismas se les puede clasificar en discretas y continuas. Serán discretas cuando el número de valores sea finito o infinito numerable, mientras que una variable será continua cuando el número de sus valores sea infinito no numerable. En los casos en los que las variables toman infinitos valores, la práctica habitual es agruparlos en intervalos, como se muestra en las Tabla 1, para variable continua, y en la Tabla 2 para discreta.
Variable discreta, es aquella que entre dos valores próximos puede tomar a un número finito de valores, es decir, es aquella que contiene saltos entre un número y otro (1, 2, 3, 4, etc.), por ejemplo: el número de miembros de una familia, el de obreros de una fábrica, el de alumnos de la universidad, etc.
Variable continúa, es la que puede tomar infinitos valores de un intervalo, es decir, es aquella que no contiene saltos (1.1, 1.2, 1.3, 1.4, etc.) En muchas ocasiones la diferencia es más teórica que práctica, ya que los aparatos de medida dificultan que puedan existir todos los valores del intervalo. Ejemplos, peso, estatura, distancias, etc.
La variable se denota por las mayúsculas de letras finales del alfabeto castellano. A su vez cada una de estas variables puede tomar distintos valores, colocando un subíndice, que indica el orden.
X = (X1, X2,...... Xn)

FUENTE DE DATOS

En los apartados anteriores se ha señalado que el objetivo de la Estadística es el estudio de los fenómenos de masas. Pero ello requiere el manejo de una información numérica amplia. La cuestión inmediata que surge es saber a dónde se puede recurrir para encontrar esa información necesaria y sin la cual el análisis estadístico no se puede realizar. En definitiva, se trata de conocer las fuentes que suministran información de carácter estadístico. Estas fuentes son susceptibles de clasificarse según distintos criterios. Atendiendo al agente que elabore esa información, la misma puede agruparse en endógena y exógena. La primera sería la que elabora el propio investigador. En este caso, la operación estadística conducente a recabar los datos necesarios para la realización del análisis estadístico se supone que la lleva a cabo el propio investigador. Será quien se encargue de observar los distintos caracteres, cuantitativos o cualitativos, relevantes de los elementos de una población. El resultado será una base de datos, obtenida mediante una muestra, o cualquiera de los otros procedimientos indicados con anterioridad, que permitirá el correspondiente análisis estadístico.
Esta situación se da cuando no existe fuente alternativa exógena capaz de facilitar esa información. Pero ¿qué se entiende por fuente exógena? En general, la podemos definir como aquella cuyo objeto principal es la obtención de información estadística pero que no actúa como usuaria, es decir, no es elaborada por el propio investigador.
Las fuentes exógenas son múltiples y a su vez se clasifican en dos categorías distintas. Por un lado están las fuentes oficiales o públicas, en el caso de México, un ejemplo claro es el INEGI (Instituto Nacional de Estadística y Geografía) y, por otro, las privadas (consultorias). De todas ellas las que generan mayor volumen de información son las primeras, es decir, las oficiales o públicas. Estas últimas se pueden clasificar, de acuerdo al ámbito espacial en que desarrollan sus competencias en materia estadística.

LA ESTADÍSTICA EN LA INVESTIGACIÓN

Método Estadístico
El conjunto de los métodos que se utilizan para medir las características de la información, para resumir los valores individuales, y para analizar los datos a fin de extraerles el máximo de información, es lo que se llama métodos estadísticos. Los métodos de análisis para la información cuantitativa se pueden dividir en los siguientes seis pasos:
1. Definición del problema.
2. Recopilación de la información existente.
3. Obtención de información original.
4. Clasificación.
5. Presentación.
6. Análisis.

Errores Estadísticos Comunes
Al momento de recopilar los datos que serán procesados es susceptible cometer errores así como durante los cómputos de los mismos. No obstante, hay otros errores que no tienen que ver con la digitación y que no son tan fácilmente identificables.
Algunos de estos errores son:
Sesgo: Es imposible ser completamente objetivo o no tener ideas preconcebidas antes de comenzar a estudiar un problema, y existen muchas maneras en que una perspectiva o estado mental pueda influir en la recopilación y en el análisis de la información. En estos casos se dice que hay un sesgo cuando el individuo da mayor peso a los datos que apoyan su opinión que a aquellos que la contradicen. Un
caso extremo de sesgo sería la situación donde primero se toma una decisión y después se utiliza el análisis estadístico para justificar la decisión ya tomada. Datos no comparables: el establecer comparaciones es una de las partes más importantes del análisis estadístico, pero es extremadamente importante que tales comparaciones se hagan entre datos que sean comparables. Proyección descuidada de tendencias: la proyección simplista de tendencias pasadas hacia el futuro es uno de los errores que más ha desacreditado el uso del análisis estadístico. Muestreo Incorrecto: en la mayoría de los estudios sucede que el volumen de información disponible es tan inmenso que se hace necesario estudiar muestras, para derivar conclusiones acerca de la población a que pertenece la muestra. Si la muestra se selecciona correctamente, tendrá básicamente las mismas propiedades que la población de la cual fue extraída; pero si el muestreo se realiza incorrectamente, entonces puede suceder que los resultados no signifiquen nada.

POBLACIÓN Y MUESTRA

Población: El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes. "Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones". Levin & Rubin (1996). "Una población es un conjunto de elementos que presentan una característica común". Cadenas (1974).
Una población en estadística es el conjunto de todas las observaciones en las que estamos interesados, o bien, es el conjunto de todos los procesos suceptibles de aparecer en un problema y que interesan a la persona que hace el estudio. Se llama tamaño de la población al número de individuos que la componen, siendo cada posible observación un individuo; así pues, las poblaciones pueden ser finitas e infinitas, en el caso de la segunda cabe mencionar que sólo existe en la teoría, ya que en la práctica no se encuentra la aplicación de elementos infinitos.
Cada observación en una población es un valor de una variable aleatoria X con una función de probabilidad o densidad determinada f(x). Normalmente, se denomina a las poblaciones con el nombre de la distribución de la variable; es decir, hablaremos de poblaciones normales, binomiales, etc.
Para estudiar una población existen dos posibilidades. Una de ellas consiste en estudiar todos sus elementos y sacar conclusiones; la otra consiste en estudiar sólo una parte de ellos, elegidos de tal forma que nos digan algo sobre la totalidad de las observaciones de la población. El mejor método resulta ser el primero, cuando es posible, lo cual sólo ocurre en las poblaciones finitas y razonablemente pequeñas; en el caso de poblaciones muy grandes o infinitas será muy difícil o imposible realizar un estudio total. En este caso necesitaremos tomar una muestra y nos surgirá el problema de cómo hacer para que la muestra nos diga algo sobre el conjunto de la población.
Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo llamada muestra. Muestra: La muestra es un conjunto o subconjunto representativo, seleccionado de una población, pero para que quede más claro el concepto, a continuación se enuncia el concepto de muestra de diferentes autores: Se llama muestra a una parte de la población a estudiar qué sirve para representarla". Murria R. Spiegel (1991). "Una muestra es una colección de algunos elementos de la población, pero no de todos". Levin & Rubin (1996). "Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia", Cadenas (1974).
La condición más obvia que se le puede pedir a una muestra es que sea representativa de la población. Está claro que si no conocemos la población no podemos saber si la muestra es representativa o no. La única forma de tener cierta garantía de que esto ocurra es tomar nuestra muestra de forma que cada individuo de la población y cada subgrupo posible de la población tengan igual probabilidad de ser elegidos. A este tipo de muestras se les llama muestras aleatorias o muestras al azar.
Una muestra aleatoria de tamaño n es un conjunto de n individuos tomado de tal manera que cada subconjunto de tamaño n de la población tenga la misma probabilidad de ser elegido como muestra; es decir, si la población tiene tamaño N, cada una de las combinaciones posibles de n elementos debe ser equiprobable. El estudio de muestras es más sencillo que el estudio de la población completa; cuesta menos y lleva menos tiempo. Por último, se aprobó que el examen de una población entera todavía permita la aceptación de elementos
defectuosos, por tanto, en algunos casos, el muestreo puede elevar el nivel de calidad. Una muestra representativa contiene las características relevantes de la población en las mismas proporciones que están incluidas en tal población. Los expertos en estadística recogen datos de una muestra. Utilizan esta información para hacer referencias sobre la población que está representada por la muestra. En consecuencia, muestra y población son conceptos relativos. Una población es un todo y una muestra es una fracción o segmento de ese todo.
Los sistemas de muestreo se basan normalmente en la asignación de un número a cada uno de los individuos de la población y la posterior obtención de una muestra de n números aleatorios que se obtendrá por sorteo utilizando bolas numeradas, ordenadores, etc.

ESTIMADORES Y PARÁMETROS

Los dos problemas fundamentales que estudia la inferencia estadística son el “Problema de la estimación” y el “Problema del contraste de hipótesis”. Cuando se conoce la forma funcional de la función de distribución que sigue la variable aleatoria objeto de estudio y sólo tenemos que estimar los parámetros que la determinan, estamos en un problema de inferencia estadística paramétrica; por el contrario, cuando no se conoce la forma funcional de la distribución que sigue la variable aleatoria objeto de estudio, estamos ante un problema de inferencia estadística no paramétrica. Nosotros nos vamos a limitar a problemas de inferencia estadística paramétrica, donde la variable aleatoria objeto de estudio sigue una distribución normal, y sólo se estimarán los parámetros que la determinan, la media y la desviación típica.
Estadístico: Son los datos o medidas que se obtienen sobre una muestra y por lo tanto una estimación de los parámetros.
Parámetro: Son las medidas o datos que se obtienen de la población, es decir, simplemente es el valor poblacional de las características de una población.
Se llama parámetros poblacionales a cantidades que se obtienen a partir de las observaciones de la variable y sus probabilidades y que determinan perfectamente la distribución de esta, así como las características de la población, por ejemplo: La media, μ, la varianza σ2, la proporción de determinados sucesos, P.
Los Parámetros poblacionales son números reales, constantes y únicos.
Parámetros muéstrales
Los Parámetros muéstrales son resúmenes de la información de la muestra que nos "determinan" la estructura de la muestra. Los Parámetros muéstrales no son constantes sino variables aleatorias pues sus valores dependen de la
estructura de la muestra que no es siempre la misma como consecuencia del muestreo aleatorio. A estas variables se les suele llamar estadísticos.
Los estadísticos se transforman en dos tipos: estadísticos de centralidad y estadísticos de dispersión.

MUESTREO PROBABILÍSTICO Y NO PROBABILÍSTICO

Muestreo
En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población), se selecciona una muestra, entendiendo por tal una parte representativa de la población.
El muestreo es por lo tanto una herramienta de la investigación científica, cuya función básica es determinar que parte de una población debe examinarse, con la finalidad de hacer inferencias sobre dicha población.
La muestra debe lograr una representación adecuada de la población, en la que se reproduzca de la mejor manera los rasgos esenciales de dicha población que son importantes para la investigación. Para que una muestra sea representativa, y por lo tanto útil, debe reflejar las similitudes y diferencias encontradas en la población, es decir, ejemplificar las características de ésta.
Los errores más comunes que se pueden cometer son:
1) Hacer conclusiones muy generales a partir de la observación de sólo una parte de la Población, se denomina error de muestreo.
2) Hacer conclusiones hacia una Población mucho más grandes de la que originalmente se tomó la muestra.
Error de Inferencia
En la estadística se usa la palabra población para referirse no sólo a personas si no a todos los elementos que han sido escogidos para su estudio y el término muestra se usa para describir una porción escogida de la población.
Tipos de Muestreo
Existen diferentes criterios de clasificación de los diferentes tipos de muestreo, aunque en general pueden dividirse en dos grandes grupos: métodos de muestreo probabilísticos y métodos de muestreo no probabilísticos.
I. Muestreo probabilístico
Los métodos de muestreo probabilísticos son aquellos que se basan en el principio de equiprobabilidad. Es decir, aquellos en los que todos los individuos tienen la misma probabilidad de ser elegidos para formar parte de una muestra y, consiguientemente, todas las posibles muestras de tamaño n tienen la misma probabilidad de ser seleccionadas. Sólo estos métodos de muestreo probabilísticos nos aseguran la representatividad de la muestra extraída y son, por tanto, los más recomendables.
II. Métodos de muestreo no probabilísticos
A veces, para estudios exploratorios, el muestreo probabilístico resulta excesivamente costoso y se acude a métodos no probabilísticos, aun siendo conscientes de que no sirven para realizar generalizaciones (estimaciones inferenciales sobre la población), pues no se tiene certeza de que la muestra extraída sea representativa, ya que no todos los sujetos de la población tienen la misma probabilidad de ser elegidos por lo que puede traer como consecuencia proporcionar información errónea En general se seleccionan a los sujetos siguiendo determinados criterios procurando, en la medida de lo posible, que la muestra sea representativa, pero en este tipo de muestreo la selección de la muestra no es aleatoria, sino que se basa en el juicio del entrevistador o del responsables de la investigación, además no se basa en ninguna teoría de probabilidad, por lo tanto no es posible calcular la precisión o bien ocultar los posibles errores cometidos.
En algunas circunstancias los métodos estadísticos y epidemiológicos permiten resolver los problemas de representatividad aun en situaciones de muestreo no
probabilístico, por ejemplo los estudios de caso-control, donde los casos no son seleccionados aleatoriamente de la población.
Entre los métodos de muestreo no probabilísticos más utilizados en investigación encontramos:
1) Muestreo por cuotas: También denominado en ocasiones "accidental". Se asienta generalmente sobre la base de un buen conocimiento de los estratos de la población y/o de los individuos más "representativos" o "adecuados" para los fines de la investigación. Mantiene, por tanto, semejanzas con el muestreo aleatorio estratificado, pero no tiene el carácter de aleatoriedad l.
En este tipo de muestreo se fijan unas "cuotas" que consisten en un número de individuos que reúnen unas determinadas condiciones, por ejemplo: 20 individuos de 25 a 40 años, de sexo femenino y residentes en Gijón. Una vez determinada la cuota se eligen los primeros que se encuentren que cumplan esas características. Este método se utiliza mucho en las encuestas de opinión.
2) Muestreo intencional o de conveniencia: Este tipo de muestreo se caracteriza por un esfuerzo deliberado de obtener muestras "representativas" mediante la inclusión en la muestra de grupos supuestamente típicos, las muestras se seleccionan según el criterio de accesibilidad o comodidad Es muy frecuente su utilización en sondeos preelectorales de zonas que en anteriores votaciones han marcado tendencias de voto, también se emplea en lugares como centros comerciales, plazas, estaciones de autobuses, tren, metro, sobre todo que tienen gran afluencia pública, ya que se obtiene así un gran número de cuestionarios de forma rápida y económica.
También puede ser que el investigador seleccione directa e intencionadamente los individuos de la población. El caso más frecuente de este procedimiento es utilizar como muestra los individuos a los que
se tiene fácil acceso (los profesores de universidad emplean con mucha frecuencia a sus propios alumnos).
3) Bola de nieve: Se localiza algunos individuos, los cuales conducen a otros, y estos a otros, y así hasta conseguir una muestra suficiente. Este se emplea muy frecuentemente cuando se hacen estudios con poblaciones "marginales", delincuentes, sectas, determinados tipos de enfermos, etc.
4) Muestreo Discrecional: A criterio del investigador los elementos son elegidos sobre lo que él cree que pueden aportar al estudio


MUESTREO ALEATORIO SIMPLE

Todos los individuos tienen la misma probabilidad de ser seleccionados. La selección de la muestra puede realizarse a través de cualquier mecanismo probabilístico en el que todos los elementos tengan las mismas opciones de salir. Por ejemplo uno de estos mecanismos es utilizar una tabla de números aleatorios, o también con un ordenador generar números aleatorios, comprendidos entre cero y uno, y multiplicarlos por el tamaño de la población, este es el que vamos a utilizar.
El procedimiento empleado es el siguiente:
1) Se asigna un número a cada individuo de la población.
2) A través de algún medio mecánico (bolas dentro de una bolsa, tablas de números aleatorios, números aleatorios generadas con una calculadora u ordenador, etc.) se eligen tantos sujetos como sea necesario para completar el tamaño de muestra requerido.
Este procedimiento, atractivo por su simpleza, tiene poca o nula utilidad práctica cuando la población que estamos manejando es muy grande.
Muestreo aleatorio sistemático
Este procedimiento exige, como el anterior, numerar todos los elementos de la población, pero en lugar de extraer n números aleatorios sólo se extrae uno. Se parte de ese número aleatorio i, que es un número elegido al azar, y los elementos que integran la muestra son los que ocupa los lugares i, i+k, i+2k, i+3k,..., i+(n-1) k, es decir, se toman los individuos de k en k, siendo k el resultado de dividir el tamaño de la población entre el tamaño de la muestra: k= N/n. El número i que empleamos como punto de partida será un número al azar entre 1 y k.
El riesgo de este tipo de muestreo está en los casos en que se dan periodicidades en la población, ya que al elegir a los miembros de la muestra con una periodicidad constante (k) podemos introducir una homogeneidad que no se da en la población. Imaginemos que estamos seleccionando una muestra sobre listas de 10 individuos en los que los 5 primeros son varones y los 5 últimos mujeres, si empleamos un muestreo aleatorio sistemático con k=10 siempre seleccionaríamos o sólo hombres o sólo mujeres, no podría haber una representación de los dos sexos.
Tamaño de muestra
A la hora de determinar el tamaño que debe alcanzar una muestra, hay que tomar en cuenta varios factores, como son, el tipo de muestreo, el parámetro a estimar, el error muestral admisible, la varianza poblacional y el nivel de confianza. Por ello, antes de presentar algunos casos sencillos de cálculo de tamaño de muestra delimitaremos estos factores.
Para calcular el tamaño de una muestra se necesitan los siguientes factores:
1. El porcentaje de confianza con el cual se quiere generalizar los datos de muestra hacia la población total.
2. El porcentaje de error que se pretende aceptar al momento de hacer la generalización.
3. El nivel de variabilidad que se calcula para comprobar la hipótesis.
La confianza o el porcentaje de confianza es el porcentaje de seguridad que existe para generalizar los resultados obtenidos. Esto quiere decir que un porcentaje del 100%, equivale a decir que no existe ninguna duda para generalizar tales resultados, pero también implica estudiar a la totalidad de los casos de la población. Para evitar un costo muy alto, para el estudio, o debido a que en ocasiones llega a ser prácticamente imposible el estudio de todos los
casos, entonces se busca un porcentaje de confianza menor. Comúnmente en las investigaciones sociales se busca un 95%.
El error o porcentaje de error equivale a elegir una probabilidad de aceptar una hipótesis que sea falsa como si fuera verdadera, o a la inversa, rechazar la hipótesis verdadera por considerarla falsa. Al igual que en el caso de confianza, si se quiere eliminar el riesgo de error y considerando como 0% entonces, la muestra es del mimo tamaño que la población, por lo que conviene correr con cierto riesgo de equivocarse.
Comúnmente se acepta entre 4% y 6% como error, tomando en cuenta de que no son complementarios la confianza y el error.

Ejemplo:
Supóngase que por estudios anteriores, se tiene conocimiento de que la proporción de deportistas entre los estudiantes de una universidad es del 0.65. Se pregunta ¿Qué tamaño deberá tomarse la muestra si se quiere que el error no exceda un 15% y un grado de confianza del 99%?
Solución:
Tomemos en cuenta que se sabe que la proporciones de estudiantes que practica un deporte en esa universidad es del 0.65, se puede utilizar este valor como una estimación de la proporción verdadera, en cuyo caso nos apoyaremos de la fórmula anterior para calcular el tamaño de la muestra.
n= Tamaño de la muestra,
z= 99% = 2.58
p= 0.65
q= 1- 0.65= 0.35
B o e = 0.15
Sustituyendo, tendremos:
n = (2.58)2 (0.65) (0.35) = (6.6564) (0.2275) = 1.14331 = 67.3036
Esto quiere decir que la muestra será de 67.
(0.15)2 0.0225 0.0225
En caso de conocer el tamaño de la población, cuando la variable crítica es
dicotómica o binomial, para la estimación de proporciones poblacionales o
universos considerados finitos, entonces el tamaño de la muestra se
determinará con la siguiente fórmula:




MUESTREO ESTRATIFICADO

Muestreo aleatorio estratificado
Trata de obviar las dificultades que presentan los anteriores ya que simplifican los procesos y suelen reducir el error muestral para un tamaño dado de la muestra. Consiste en considerar categorías típicas diferentes entre sí (estratos) que poseen gran homogeneidad internamente pero externamente con gran heterogeneidad respecto a alguna característica (se puede estratificar, por ejemplo, según la profesión, el municipio de residencia, el sexo, el estado civil, nivel económico, nivel cultural etc.). Lo que se pretende con este tipo de muestreo es asegurarse de que todos los estratos de interés estarán representados adecuadamente en la muestra; y permite obtener la información, sobre las características del estudio más precisas de las estimaciones de la población, arrojando así mejores resultados.
La dificultad de este muestreo es la dificultad de decidir a que estrato se asigna cada uno de los elementos de la población. Cada estrato funciona independientemente, pudiendo aplicarse dentro de ellos el muestreo aleatorio simple o el estratificado para elegir los elementos concretos que formarán parte de la muestra. En ocasiones las dificultades que plantean son demasiado grandes, pues exige un conocimiento detallado de la población. (Tamaño geográfico, sexos, edades,...).
La distribución de la muestra en función de los diferentes estratos se denomina afijación, y puede ser de diferentes tipos:
Afijación Simple: A cada estrato le corresponde igual número de elementos muéstrales. Afijación Proporcional: La distribución se hace de acuerdo con el peso (tamaño) de la población en cada estrato.
Afijación Óptima: Se tiene en cuenta la previsible dispersión de los resultados, de modo que se considera la proporción y la desviación típica. Tiene poca aplicación ya que no se suele conocer la desviación.

MUESTREO POR CONGLOMERADOS

Muestreo aleatorio por conglomerados
Los métodos presentados hasta ahora están pensados para seleccionar directamente los elementos de la población, es decir, que las unidades muéstrales son los elementos de la población.
En el muestreo por conglomerados la unidad muestral es un grupo de elementos de la población que forman una unidad, a la que llamamos conglomerado. Las unidades hospitalarias, los departamentos universitarios, una caja de determinado producto, etc., son conglomerados naturales.
En otras ocasiones se pueden utilizar conglomerados no naturales como, por ejemplo, las urnas electorales. Cuando los conglomerados son áreas geográficas suele hablarse de "muestreo por áreas".
El muestreo por conglomerados consiste en seleccionar aleatoriamente un cierto número de conglomerados (el necesario para alcanzar el tamaño muestral establecido) y en investigar después todos los elementos pertenecientes a los conglomerados elegidos.

OTROS DISEÑOS Y PROCEDIMIENTOS DE MUESTREO: JUICIO Y CONVENIENCIA

Muestreo de juicio Una muestra es llamada muestra de juicio cuando sus elementos son seleccionados mediante juicio personal. La persona que selecciona los elementos de la muestra, usualmente es un experto en la medida dada, ya que descuerdo a su criterio busca las unidades más representativas. Una muestra de juicio es llamada una muestra probabilística, puesto que este método está basado en los puntos de vista subjetivos de una persona y la teoría de la probabilidad no puede ser empleada para medir el error de muestreo. Las principales ventajas de una muestra de juicio son la facilidad de obtenerla y que el costo usualmente es bajo. Este tipo de muestreo se ocupa cuando el tamaño de la muestra es pequeña.
Muestreo por conveniencia Una muestra aleatoria simple es seleccionada de tal manera que cada muestra posible del mismo tamaño tiene igual probabilidad de ser seleccionada de la población, incluso la muestra se selecciona según el criterio de accesibilidad y comodidad Para obtener una muestra aleatoria simple, cada elemento en la población tiene la misma probabilidad de ser seleccionado, el plan de muestreo puede no conducir a una muestra aleatoria simple. Por conveniencia, este método pude ser reemplazado por una tabla de números aleatorios. Cuando una población es infinita, es obvio que la tarea de numerar cada elemento de la población es infinita, por lo tanto, numerar cada elemento de la población es imposible. Por lo tanto, ciertas modificaciones del muestreo aleatorio simple son necesarias. Los tipos más comunes de muestreo aleatorio modificado son sistemáticos, estratificados y de conglomerados.

ERROR DE MUESTREO Y DE LA MUESTRA

El error de la muestra es la diferencia entre el resultado obtenido de una muestra estadística y el resultado que deberíamos haber obtenido de la población, el error de la muestra es medido por el error estadístico y el error de muestreo es el que aparece cuando usualmente no se lleva a cabo la encuesta completa de la población, sino que se toma una muestra para estimar las características de la población.
Nos encontramos que al momento de recopilar los datos que serán procesados es susceptible cometer errores, así como durante los cómputos de los mismos. No obstante, hay otros errores que no tienen nada que ver con la digitación y que no son tan fácilmente identificables,
Algunos de estos errores son:
Sesgo: Es imposible ser completamente objetivo o no tener ideas preconcebidas antes de comenzar a estudiar un problema, y existen muchas maneras en que una perspectiva o estado mental pueda influir en la recopilación y en el análisis de la información. En estos casos se dice que hay un sesgo, cuando el individuo da mayor peso a los datos que apoyan su opinión en comparación de aquellos que la contradicen. Un caso extremo de sesgo sería la situación donde primero se toma una decisión y después se utiliza el análisis estadístico para justificar la decisión ya tomada. Datos no comparables: el establecer comparaciones es una de las partes más importantes del análisis estadístico, pero es extremadamente importante que tales comparaciones se hagan entre datos que sean comparables. Proyección descuidada de tendencias: la proyección simplista de tendencias pasadas hacia el futuro es uno de los errores que más ha desacreditado el uso del análisis estadístico.
Muestreo Incorrecto: en la mayoría de los estudios sucede que el volumen de información disponible es tan inmenso que se hace necesario estudiar muestras, para derivar conclusiones acerca de la población a que pertenece la muestra. Si la muestra se selecciona correctamente, tendrá básicamente las mismas propiedades que la población de la cual fue extraída; pero si el muestreo se realiza incorrectamente, entonces puede suceder que los resultados no signifiquen nada.

ANÁLISIS EXPLORATORIO DE DATOS: DIAGRAMA DE TALLOS Y HOJAS

Una técnica de recuento y ordenación de datos la constituye los diagramas de Tallos y Hojas. Un diagrama donde cada valor de datos es dividido en una "hoja" (normalmente el último dígito) y un "tallo" (los otros dígitos). Por ejemplo "31" sería dividido en "3" (tallo/ decena) y "1" (hoja/ unidad).
Los valores del "tallo" se escriben hacia abajo (vertical) y los valores "hoja" van a la derecha (horizontal) del los valores tallo. El "tallo" es usado para agrupar los puntajes y cada "hoja" indica los puntajes individuales dentro de cada grupo.
Ejemplo:
Supongamos la siguiente distribución de frecuencias, que representan la edad de un colectivo de N = 20 personas y que vamos a representar mediante un diagrama de Tallos y Hojas:
36 25 37 24 39 20 36 45 31 31 39 24 29 23 41 40 33 24 34 40
Comenzamos seleccionando los tallos que en nuestro caso son las cifras de decenas, es decir 3, 2, 4, que reordenadas son 2, 3 y 4.
A continuación efectuamos un recuento y vamos «añadiendo» cada hoja a su tallo.
Podemos comparar, mediante estos diagramas, dos distribuciones. Supongamos una segunda distribución.
35 38 32 28 30 29 27 19 48 40 39 24 24 34 26 41 29 48 28 22
De ella podemos elaborar sus diagramas de Tallos y Hojas y compararla con la anterior.






ESCALAS DE MEDICIÓN: NOMINAL, ORDINAL, DE INTERVALO Y DE RAZÓN

Para realizar un correcto análisis de los datos es fundamental conocer de antemano el tipo de medida de la variable, ya que para cada una de ellas se utilizan diferentes estadísticos. La clasificación más convencional de las escalas de medida se divide en cuatro grupos denominados Nominal, Ordinal, Intervalo y Razón.

Nominal

Son variables numéricas cuyos valores representan una categoría distintiva que no implican un orden específico o identifican un grupo de pertenencia Este tipo de variables sólo nos permite establecer relaciones de igualdad/desigualdad entre los elementos de la variable. La asignación de los valores se realiza en forma aleatoria por lo que NO cuenta con un orden lógico. Un ejemplo de este tipo de variables es el Género ya que nosotros podemos asignarles un valor a los (A) hombres y otro diferente a las mujeres (B) y por más machistas o feministas que seamos no podríamos establecer que uno es mayor que el otro. O Bien se clasificará a una muestra de personas de acuerdo a la religión que profesan: (1) Cristianos, (2) Judíos, (3) Musulmanes, (4) Otros y (5) Sin creencia alguna.
                                                                  A                 B

Ordinal

Son variables numéricas cuyos valores representan una categoría o identifican un grupo de pertenencia contando con un orden lógico. Este tipo de variables
nos permite establecer relaciones de igualdad/desigualdad y a su vez, podemos identificar si una categoría es mayor o menor que otra. La medición ordinal permite ordenar los eventos en función de mayor o menor posesión de un atributo o característica. Un ejemplo de variable ordinal es el nivel de educación, ya que se puede establecer que una persona con título de Postgrado tiene un nivel de educación superior al de una persona con título de bachiller. En las variables ordinales no se puede determinar la distancia entre sus categorías, ya que no es cuantificable o medible.













Intervalo
Son variables numéricas cuyos valores representan magnitudes y la distancia entre los números de su escala es igual. Con este tipo de variables podemos realizar comparaciones de igualdad/desigualdad, establecer un orden dentro de sus valores y medir la distancia existente entre cada valor de la escala, sobre todo es aplicable a las variables continuas debido a que la multiplicación y la división no son realizables. Un ejemplo de este tipo de variables es la temperatura, ya que podemos decir que la distancia entre 10 y 12 grados es la misma que la existente entre 15 y 17 grados. Lo que no podemos establecer es que una temperatura de 10 grados equivale a la mitad de una temperatura de 20 grados.
Razón
Las variables de razón poseen las mismas características de las variables de intervalo, con la diferencia que cuentan con un cero absoluto; es decir, el valor cero (0) representa la ausencia total de medida, por lo que se puede realizar cualquier operación Aritmética (Suma, Resta, Multiplicación y División) y Lógica (Comparación y ordenamiento). Este tipo de variables permiten el nivel más alto de medición, además que determinan la distancia exacta entre los intervalos de una categoría Las variables altura, peso, distancia o el salario, son algunos ejemplos de este tipo de escala de medida. Debido a la similitud existente entre las escalas de intervalo y de razón, el Stadistic Program Social System (SPSS) las ha reunido en un nuevo tipo de medida exclusivo del programa, al cual denomina Escala. Las variables de escala son para SPSS todas aquellas variables cuyos valores representan magnitudes, ya sea que cuenten con un cero (0) absoluto o no. Teniendo esto en cuenta discutiremos a continuación los diferentes procedimientos estadísticos que se pueden utilizar de acuerdo al tipo de medida de cada variable.

Tabla de frecuencia para variables discretas y continuas






TABLAS DE FRECUENCIA PARA VARIABLES DISCRETAS Y CONTINUAS

El principal objetivo de la estadística descriptiva es sintetizar conjuntos de datos mediante tablas o gráficos resumen, con el fin de poder identificar el comportamiento característico de un fenómeno y facilitar su análisis exhaustivo.
Frecuencia
Es el número de veces que se repite, es decir que aparece, el mismo dato estadístico en un conjunto de observaciones de una investigación determinada; la frecuencia se designa como: fi
Distribución de frecuencia: Es una disposición tabular de datos estadísticos ordenados ascendente o descendentemente con la frecuencia (fi) de cada dato.

Ejemplo:
Los datos representan los años de servicio de 60 empleados de la empresa Mcperro.
10 9 3 5 4 5 6 7 8 9 10 8 4 8 6 3 8 10
7 10 8 3 5 7 8 6 10 9 7 8 5 3 8 7 8 10
8 10 8 7 7 9 8 7 6 5 7 8 8 9 8 10 7 6
7 8 6 7 6 10
Procedimiento: Ordenar los datos de menor a mayor, elaborar cuadro de distribución de frecuencia.
Ordena de mayor a menor, usaremos diagrama de tallo y hoja.
hagan el ejercicio de arriba así como lo muestra el vídeo si se puede hacer mejor ordenándolos ya que seria fácil identificar los números que se repiten 

Clasificación de las series estadísticas: 1. Series temporales o cronológicas; estas se definen como una masa o conjunto de datos, producto de la observación de un fenómeno individual o colectivo, cuantificable en sucesivos instantes o periodos de tiempo, esto nos permite conocer el comportamiento o tendencia de las variables en el tiempo.


Es importante resaltar que cuando se trata de series temporales o cronológicas, se debe especificar el instante o el periodo de tiempo a los que se refiere los caracteres en estudio. Nos referimos a instantes de tiempo, por el hecho de que la observación se hace en un momento específico de tiempo. Ejemplo: Plantaciones forestales ejecutadas a nivel nacional, al 31 de diciembre de cada año entre 1997 – 2001. 2. Series atemporales; cuando las observaciones de un fenómeno se hacen referidas al mismo instante o intervalo de tiempo, nos encontramos ante
una serie atemporal. Aquí el tiempo no va incluido a cada observación, puesto que es el mismo tiempo para todas ellas. Este tipo de observación proporciona una "visión instantánea" de los fenómenos o caracteres de los componentes del colectivo en estudio. Ejemplo: Las notas de las participantes en la materia de Estadística I en el periodo académico que terminó en septiembre del 2001. 3. Series de frecuencia; cuando realizamos un estudio de cada uno de los elementos que componen la población o muestra bajo análisis, observamos que en general, hay un número de veces en que aparece repetido un mismo valor de una variable, o bien repeticiones de la misma modalidad de un atributo. Este número de repeticiones de un resultado, recibe el nombre de frecuencia absoluta o simplemente frecuencia. El procedimiento mediante el cual se realiza el conteo, para así determinar el número de veces que cada dato se repite, recibe el nombre de tabulación.
Los cuadros estadísticos están compuestos por las siguientes partes:
1. Título
2. Encabezado
3. Concepto o columnas
4. Cuerpo
5. Nota de encabezado
6. Nota de pie
7. Fuente de datos

INTERVALO DE CLASE Y LÍMITES DE CLASE

Rango
El rango de clase, conocido también como amplitud de clase o recorrido de clase, es el límite dentro de los cuales están comprendidos los valores de la serie de datos, en otras palabras, es el número de diferentes valores que toma la variable en un estudio de investigación dada. Es la diferencia entre el valor máximo de una variable y el valor mínimo que ésta toma en una investigación cualquiera. El rango de una distribución de frecuencia se designa con la letra R.
UM normalmente es igual a 1, y se obtiene al obtener la diferencia entre 2 ó más datos consecutivos de la serie de valores, sin embargo pueden ser menor a la unidad.


Para calcular el rango se utiliza la siguiente fórmula:
R = XM - Xm + UM


Dónde:
R = Rango
XM = Dato mayor
Xm = Dato menor
UM = Unidad de Medida, que por lo general es la unidad.
Con los siguientes datos, que corresponden a los años de servicio de 60 empleados de la empresa “X”, calcule el rango de la distribución de la frecuencia:

R = XM - Xm + UM


Anchura o intervalo de clase
Son las divisiones o categorías en las cuales se agrupa un conjunto de datos ordenados con características comunes. En otras palabras, son fraccionamientos del rango o recorrido de la serie de valores para reunir los datos que presentan valores comprendidos entre los dos límites (límite Superior de la Clase y Límite Inferior de la Clase).
Límite o frontera de clase
Las clases de una distribución de frecuencia indican las cotas o fronteras de cada clase en la distribución, las clases están formadas por dos números denominados límites aparentes (LA), ejemplo 32 – 37, el primero de estos dos (32) se llama límite inferior aparente (LIA) y el segundo (37) se le denomina límite superior aparente (LSA).
Límites reales
Los límites reales o verdaderos de una clase son aquéllos que se obtienen restándole media unidad de medida al límite aparente inferior de una clase y sumándole media unidad de medida al límite superior aparente de las diferentes clases, es decir, son valores no observables de la variable en estudio, puesto que no lo registra la unidad utilizada. Y se denominarán límite inferior real (LIR) y límite superior real (LSR).





ANCHURA DE INTERVALO DE CLASE


Tipos de intervalos de clase
Clase de igual tamaño
Este tipo de clase es el más utilizado en los cálculos estadísticos; cuando todas las clases son del mismo tamaño, los cálculos relacionados con la distribución de frecuencia son simplificados considerablemente. En términos generales, este tipo de distribución es el que se utiliza comúnmente en casi todas las investigaciones.

Clase desigual de tamaño
Los intervalos de clase son desiguales no son frecuentes en el análisis estadístico, la utilización de los mismos se debe evitar; sin embargo, en algunas
investigaciones es indispensable su utilización; tal es el caso de las investigaciones que tienen como propósito particular analizar valores que varían en un amplio recorrido de la variable. Cuando se utiliza este tipo de clase de los intervalos de clase deberían ser incrementados de una forma ordenada, de ser posible. Este tipo de clases se utiliza algunas veces para reportar datos relacionados con valuaciones de activos o ingresos personales.

CLASE             Fi
 5 – 7                 5
8 – 10               10
11 – 13             15
14 – 16             18
17 – 19             11        
20 – 22              5
Totales            64
Clase desigual

Clase abierta
Son aquellas en la que uno de sus dos los límites de clase no está definido numéricamente. Este tipo de clase se utiliza cuando las distribuciones poseen algunos datos u observaciones que son mucho mayores o mucho más pequeños que los demás y se quiere condensar en uno solo. En lo posible se debe tratar de evitar este tipo de clase ya que en estas condiciones no es posible definir el punto medio de la distribución, por lo cual se hace difícil la representación gráfica y en realizar otros cálculos con los datos que se presentan en los cuadros estadísticos. Sin embargo, existen investigaciones en donde la aplicación de las clases abiertas es conveniente, por cuanto, la
existencia de valores de la serie de datos son mucho menores o mucho mayores que el resto de la serie.


MARCA DE CLASE

Marca de clase: Es el punto medio de una clase y se obtiene sumando los
límites inferiores (LIA) y superiores de una clase (LSA) y dividiendo el resultado
entre dos. La marca de clase la denotaremos como MC.
En un estudio estadístico, valor representativo de cada intervalo. Tomamos como marca de clase el punto medio de cada intervalo y lo calculamos sumando los extremos del intervalo y dividiéndolo entre 2.

       MC= LIA+LSA/2
Donde:
M C = Marca de clase
LIA = Límite inferior aparente
LSA = Límite superior aparente
un ejemplo de marca de clase 

DISTRIBUCIÓN DE FRECUENCIA RELATIVA Y ACUMULADA PARA VARIABLES DISCRETAS Y CONTINUAS

Como vimos anteriormente, la frecuencia es el número de veces que se presenta cada valor de la variable.
Frecuencia absoluta (fa o fi): Llamaremos así al número de repeticiones que presenta una observación. Se representa por ni.
F1 + F2 + F3 +…………….……FK = N
Frecuencia relativa (fr): Es la frecuencia absoluta dividida por el número total de datos, se suele expresar en tanto por uno, siendo su valor -iésimo .
fi=ni/n
La suma de todas las frecuencias relativas, siempre debe ser igual a la unida o 100%.
Frecuencia absoluta acumulada (faa): es la suma de los distintos valores de la frecuencia absoluta tomando como referencia un individuo dado. La última frecuencia absoluta acumulada es igual al nº de casos.


N1 = n1
N2 = n1+ n2
Nn = n1 + n2 + ..... + nn-1 + nn = n
Frecuencia relativa acumulada (far), es el resultado de la suma de los distintos valores de la frecuencia relativa, el total de estos valores nos dará como resultado la unidad o el 100%.

H1 = F1/n
H2 = F2/n
Hk = Fk/n

GRÁFICA PARA DATOS CUALITATIVOS: GRÁFICA DE BARRAS Y DE PASTEL

Gráfica de barras

Este diagrama de hania de ejemplo está basado en los resultados de la Elección del Parlamento Europeo en el 2004 y en el de 1999. La tabla siguiente lista el número de asientos asignadas a cada partido. Los resultados de 1999 han sido multiplicados por 1.16933, para compensar el cambio en el número de asientos entre estos años.

GrupoAsientos (2004)Asientos (1999) a escala
EUL3949200210
EFA4256
EDD1519
ELDR6760
EPP276272
UEN2736
Otros6629
Un gráfico de barras visualizando los resultados anteriores de la elección del 2004 se vería así:
(Si todos los datos fuesen ordenados en orden descendiente este tipo de gráfico de barras sería llamado un Diagrama de Pareto.)

Este gráfico de barras muestra ambos resultados (2004 y 1999):
A qui se muestra un gráfico tipo Pastel
GRACIAS A LA COLABORACIÓN DE 
 POR EL VIDEO