viernes, 22 de abril de 2011

CONVERTIR TANTO POR CIENTO A DECIMALES Y VICEVERSA

Se debe recordar siempre que un por ciento significa un centésimo. Lo dice la palabra misma: por ciento es por cien, se está comparando con cien: si 15% de la populación son ancianos, significa que 15 personas de cada cien son ancianos.
1% es un centésimo ó 0.01 4% es cuatro centésimos ó 0.04 12% es doce centésimos ó 0.12 89% es 89 centésimos ó 0.89 100% es cien centésimos ó 1 145% es 145 centésimos ó 1.45
Convertir un número decimal en tanto por ciento
Si tiene un número decimal, sólo se observa cuántos centésimos tiene.
Por eso se debe entender que la primera cifra decimal después del punto significa los décimos, y la segunda cifra después del punto significa las centésimos.
0.08 tiene 8 centésimos o 8% 0.2 no tiene dos cifras decimales; entonces pongamos un cero en la segunda cifra decimal: 0.2 es igual a 0.20. entonces tiene 20 centésimos o 20%. 1.1 también pongamos un cero en la segunda cifra decimal y es 1.10 Es más de uno; tiene más de 100 centésimos; 1.10 tiene 110 centésimos; y es 110%. 0.495 tiene tres cifras decimales. Cuando se convierte a tanto por ciento, el
porcentaje tendrá un punto decimal. 0.495 tiene 49 centésimos; y un medio centésimo además. Por eso 0.495 es 49 1/2 % o normalmente escribimos 49.5% 0.3829 es 38.29% 1.078 es 107.8%

NOTACIÓN CIENTÍFICA

La notación científica (o notación índice estándar) es un modo conciso de
representar un número utilizando potencias de base diez. Los números se
escriben como un producto: a · 10k, (siendo a un número mayor o igual que 1 y
menor que 10, y k un número entero). Esta notación se utiliza para poder
expresar fácilmente números muy grandes.
La notación científica utiliza un sistema llamado coma flotante, o de punto
flotante en países de habla inglesa y en algunos hispanohablantes.
Escritura

  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1 000
  • 104 = 10 000
  • 105 = 100 000
  • 106 = 1 000 000
  • 107 = 10 000 000
  • 108 = 100 000 000
  • 109 = 1 000 000 000
  • 1010 = 10 000 000 000
  • 1020 = 100 000 000 000 000 000 000
  • 1030 = 1 000 000 000 000 000 000 000 000 000 000
10 elevado a una potencia entera negativa –n es igual a 1/10n o
equivalentemente a 0, (n–1 ceros) 1:

  • 10–1 = 1/10 = 0,1
  • 10–2 = 1/100 = 0,01
  • 10–3 = 1/1 000 = 0,001
  • 10–9 = 1/1 000 000 000 = 0,000 000 001

Por tanto, un número como: 156 234 000 000 000 000 000 000 000 000 puede ser escrito como 1,56234×1029,
y un número pequeño como 0,000 000 000 000 000 000 000 000 000 000 910 939 kg (masa de un electrón) puede ser escrito como 9.10939×10–31kg.
Por ejemplo, la distancia a los confines observables del universo es ~4,6·1026m y la masa de un protón es ~1,67·10-27 kilogramos. La mayoría de las calculadoras y muchos programas de computadora presentan resultados muy grandes y muy pequeños en notación científica; los números 10 generalmente se omiten y se utiliza la letra E para el exponente; por ejemplo: 1,56234 E29. Nótese que esto no está relacionado con la base del logaritmo natural también denotado comúnmente con la letra e.
La notación científica es altamente útil para anotar cantidades físicas, pues pueden ser medidas solamente dentro de ciertos límites de error y al anotar sólo los dígitos significativos se da toda la información requerida sin malgastar espacio.
Para expresar un número en notación científica debe expresarse en forma tal que contenga un dígito (el más significativo) en el lugar de las unidades, todos los demás dígitos irán entonces después del separador decimal multiplicado por el exponente de 10 respectivo.
Ejemplo:
238294360000 = 2,3829436E11 y 0,000312459 = 3,12459E-4.
Operaciones matemáticas con notación científica
Suma y resta
Siempre que las potencias de 10 sean las mismas, se debe sumar las mantisas, dejando la potencia de 10 con el mismo grado (en caso de que no tengan el mismo exponente, debe convertirse la mantisa multiplicándola o dividiéndola por 10 tantas veces como sea necesario para obtener el mismo exponente).
Ejemplo:
2·E104 + 3·E104 = 5·E104 (E SE REFIERE A EXPONENTE)
Para sumar y restar dos números (o más) debemos tener el mismo exponente en las potencias de base diez. Tomamos como factor común el mayor y movemos la coma flotante, en los menores, tantos espacios como sea necesario, elevando los correspondientes exponentes hasta que todos sean iguales.
Ejemplo:
2·E104 + 3·E105 - 6·E103 (tomamos el exponente 5 como referencia)
0.2·E105 + 3·E105 - 0.06·E105
3.14·E105
Multiplicación
Se multiplican los coeficientes y se suman a la vez los exponentes.
Ejemplo:
(4·E105)· (2·E107) = 8·E1012
División
Se dividen las mantisas y se restan los exponentes (numerador-denominador).
Ejemplo:
(4·E1012)/ (2·E105) =2·E107
Además se pueden pasar los dos números al mismo exponente y luego nada más multiplicar.
Potenciación
Se potencia la mantisa y se multiplican los exponentes.
Ejemplo:
(3·E106)2 = 9·E1012
Radicación
Se debe extraer la raíz de la mantisa y dividir el exponente por el índice de la raíz:
Ejemplos:

DEFINICIÓN Y OBJETO DE LA ESTADÍSTICA

Historia de la Estadística
Los comienzos de la estadística pueden ser hallados en el antiguo Egipto, cuyos faraones lograron recopilar, hacia el año 3050 antes de Cristo, prolijos datos relativos a la población y la riqueza del país. De acuerdo al historiador griego Heródoto, dicho registro de riqueza y población se hizo con el objetivo de preparar la construcción de las pirámides. En el mismo Egipto, Ramsés II hizo un censo de las tierras con el objeto de verificar un nuevo reparto.
En el antiguo Israel la Biblia da referencias, en el libro de los Números, de los datos estadísticos obtenidos en dos recuentos de la población hebrea. El rey David por otra parte, ordenó a Joab, general del ejército hacer un censo de Israel con la finalidad de conocer el número de la población.
También los chinos efectuaron censos hace más de cuarenta siglos. Los griegos efectuaron censos periódicamente con fines tributarios, sociales (división de tierras) y militares (cálculo de recursos y hombres disponibles). La investigación histórica revela que se realizaron 69 censos para calcular los impuestos, determinar los derechos de voto y ponderar la potencia guerrera.
Pero fueron los romanos, maestros de la organización política, quienes mejor supieron emplear los recursos de la estadística. Cada cinco años realizaban un censo de la población y sus funcionarios públicos tenían la obligación de anotar nacimientos, defunciones y matrimonios, sin olvidar los recuentos periódicos del ganado y de las riquezas contenidas en las tierras conquistadas. Para el nacimiento de Cristo sucedía uno de estos empadronamientos de la población bajo la autoridad del imperio.
Durante los mil años siguientes, a la caída del imperio Romano, se realizaron muy pocas operaciones Estadísticas, con la notable excepción de las relaciones de tierras pertenecientes a la Iglesia, compiladas por Pipino el Breve en el 758 y por Carlomagno en el 762 DC. Durante el siglo IX se realizaron en Francia algunos censos parciales de siervos. En Inglaterra, Guillermo el
Conquistador recopiló el Domesday Book o libro del Gran Catastro para el año 1086, un documento de la propiedad, extensión y valor de las tierras de Inglaterra. Esa obra fue el primer compendio estadístico de Inglaterra.
Aunque Carlomagno, en Francia, y Guillermo el Conquistador, en Inglaterra, trataron de revivir la técnica romana, los métodos estadísticos permanecieron casi olvidados durante la Edad Media.
Durante los siglos XV, XVI, y XVII, hombres como Leonardo de Vinci, Nicolás Copérnico, Galileo, Neper, William Harvey, Sir Francis Bacon y René Descartes, hicieron grandes operaciones al método científico, de tal forma que cuando se crearon los Estados Nacionales y surgió como fuerza el comercio internacional existía ya un método capaz de aplicarse a los datos económicos.
Para el año 1532 empezaron a registrarse en Inglaterra las defunciones debido al temor que Enrique VII tenía por la peste. Más o menos por la misma época, en Francia la ley exigió a los clérigos registrar los bautismos, fallecimientos y matrimonios. Durante un brote de peste que apareció a fines de la década de 1500, el gobierno inglés comenzó a publicar estadísticas semanales de los decesos. Esa costumbre continuó muchos años, y en 1632 estos Bills of Mortality (Cuentas de Mortalidad) contenían los nacimientos y fallecimientos por sexo. En 1662, el capitán John Graunt usó documentos que abarcaban treinta años y efectuó predicciones sobre el número de personas que morirían de varias enfermedades y sobre las proporciones de nacimientos de varones y mujeres que cabría esperar. El trabajo de Graunt, condensado en su obra Natural and Political Observations... made upon the Bills of Mortality (Observaciones Políticas y Naturales... hechas a partir de las Cuentas de Mortalidad), fue un esfuerzo innovador en el análisis estadístico.
Por el año 1540 el alemán Sebastián Muster realizó una compilación estadística de los recursos nacionales, comprensiva de datos sobre organización política, instrucciones sociales, comercio y poderío militar. Durante el siglo XVII aportó indicaciones más concretas de métodos de observación y análisis cuantitativo y amplió los campos de la inferencia y la teoría Estadística.
Los eruditos del siglo XVII demostraron especial interés por la Estadística Demográfica como resultado de la especulación sobre si la población aumentaba, decrecía o permanecía estática.
En los tiempos modernos tales métodos fueron resucitados por algunos reyes que necesitaban conocer las riquezas monetarias y el potencial humano de sus respectivos países. El primer empleo de los datos estadísticos para fines ajenos a la política tuvo lugar en 1691 y estuvo a cargo de Gaspar Neumann, un profesor alemán que vivía en Breslau. Este investigador se propuso destruir la antigua creencia popular de que en los años terminados en siete moría más gente que en los restantes, y para lograrlo hurgó pacientemente en los archivos parroquiales de la ciudad. Después de revisar miles de partidas de defunción pudo demostrar que en tales años no fallecían más personas que en los demás. Los procedimientos de Neumann fueron conocidos por el astrónomo inglés Halley, descubridor del cometa que lleva su nombre, quien los aplicó al estudio de la vida humana. Sus cálculos sirvieron de base para las tablas de mortalidad que hoy utilizan todas las compañías de seguros.
Durante el siglo XVII y principios del XVIII, matemáticos como Bernoulli, Francis Maseres, Lagrange y Laplace desarrollaron la teoría de probabilidades. No obstante durante cierto tiempo, la teoría de las probabilidades limitó su aplicación a los juegos de azar y hasta el siglo XVIII no comenzó a aplicarse a los grandes problemas científicos. Godofredo Achenwall, profesor de la Universidad de Gotinga, acuñó en 1760 la palabra estadística, que extrajo del término italiano statista (estadista); Creía, y con sobrada razón, que los datos de la nueva ciencia serían el aliado más eficaz del gobernante consciente. La raíz remota de la palabra se halla, por otra parte, en el término latino status, que significa estado o situación; esta etimología aumenta el valor intrínseco de la palabra, por cuanto la estadística revela el sentido cuantitativo de las más variadas situaciones.
Jacques Quételect es quien aplica las Estadísticas a las ciencias sociales; éste interpretó la teoría de la probabilidad para su uso en las ciencias sociales y resolver la aplicación del principio de promedios y de la variabilidad a
los fenómenos sociales. Quételect fue el primero en realizar la aplicación práctica de todo el método Estadístico, entonces conocido, a las diversas ramas de la ciencia.
Entretanto, en el período del 1800 al 1820 se desarrollaron dos conceptos matemáticos fundamentales para la teoría Estadística; la teoría de los errores de observación, aportada por Laplace y Gauss; y la teoría de los mínimos cuadrados desarrollada por Laplace, Gauss y Legendre. A finales del siglo XIX, Sir Francis Gaston ideó el método conocido por Correlación, que tenía por objeto medir la influencia relativa de los factores sobre las variables. De aquí partió el desarrollo del coeficiente de correlación creado por Karl Pearson y otros cultivadores de la ciencia biométrica como J. Pease Norton, R. H. Hooker y G. Udny Yule, que efectuaron amplios estudios sobre la medida de las relaciones.
Los progresos más recientes en el campo de la Estadística se refieren al ulterior desarrollo del cálculo de probabilidades, particularmente en la rama denominada indeterminismo o relatividad, se ha demostrado que el determinismo fue reconocido en la Física como resultado de las investigaciones atómicas y que este principio se juzga aplicable tanto a las ciencias sociales como a las físicas.
Etapas de Desarrollo de la Estadística
La historia de la estadística está resumida en tres grandes etapas o fases.
Primera Fase: Los Censos. Desde el momento en que se constituye una autoridad política, la idea de inventariar de una forma más o menos regular la población y las riquezas existentes en el territorio está ligada a la conciencia de soberanía y a los primeros esfuerzos administrativos. Segunda Fase: De la Descripción de los Conjuntos a la Aritmética Política. Las ideas mercantilistas extrañan una intensificación de este
tipo de investigación. Colbert multiplica las encuestas sobre artículos manufacturados, el comercio y la población: los intendentes del Reino envían a París sus memorias. Vauban, más conocido por sus fortificaciones o su Dime Royale, que es la primera propuesta de un impuesto sobre los ingresos, se señala como el verdadero precursor de los sondeos. Más tarde, Bufón se preocupa de esos problemas antes de dedicarse a la historia natural. La escuela inglesa proporciona un nuevo progreso al superar la fase puramente descriptiva. Sus tres principales representantes son Graunt, Petty y Halley. El penúltimo es autor de la famosa Aritmética Política. Chaptal, ministro del interior francés, publica en 1801 el primer censo general de población, desarrolla los estudios industriales, de las producciones y los cambios, haciéndose sistemáticos durante las dos terceras partes del siglo XIX. Tercera Fase: Estadística y Cálculo de Probabilidades. El cálculo de probabilidades se incorpora rápidamente como un instrumento de análisis extremadamente poderoso para el estudio de los fenómenos económicos y sociales y en general para el estudio de fenómenos “cuyas causas son demasiado complejas para conocerlos totalmente y hacer posible su análisis”.
Definición de Estadística
La Estadística es la ciencia cuyo objetivo es reunir una información cuantitativa concerniente a individuos, grupos, series de hechos, etc. y deducir de ello, gracias al análisis de estos datos, significados precisos o unas previsiones para el futuro.
La estadística, en general, es la ciencia que trata de la recopilación, organización presentación, análisis e interpretación de datos numéricos con el fin de realizar una toma de decisión más efectiva.
Otros autores tienen definiciones de la Estadística semejantes a las anteriores, y algunos otros no tan afines. Para Chacón esta se define como “la ciencia que tiene por objeto el estudio cuantitativo de los colectivos”.
La más aceptada, sin embargo, es la de Minguez, que define la Estadística como “La ciencia que tiene por objeto aplicar las leyes de la cantidad a los hechos sociales para medir su intensidad, deducir las leyes que los rigen y hacer su predicción próxima”.
Los estudiantes confunden comúnmente los demás términos asociados con las Estadísticas, una confusión que es conveniente aclarar debido a que esta palabra tiene tres significados: la palabra estadística, en primer término se usa para referirse a la información estadística; también se utiliza para referirse al conjunto de técnicas y métodos que se utilizan para analizar la información estadística; y el término estadístico, en singular y en masculino, se refiere a una medida derivada de una muestra.
Utilidad e Importancia
Los métodos estadísticos tradicionalmente se utilizan para propósitos descriptivos, para organizar y resumir datos numéricos. La estadística descriptiva, por ejemplo trata de la tabulación de datos, su presentación en forma gráfica o ilustrativa y el cálculo de medidas descriptivas.
Ahora bien, las técnicas estadísticas se aplican de manera amplia en mercadotecnia, contabilidad, control de calidad y en otras actividades; estudios de consumidores y de mercados; análisis de resultados en deportes; administradores de instituciones; en la educación; organismos políticos, así como en la investigación de las áreas químico-biológicas y económico-administrativas; y sobre todo la estadística es una gran herramienta que permite a las personas para toma d

ESTADÍSTICA DESCRIPTIVA Y ESTADÍSTICA INFERENCIAL

La Estadística para su mejor estudio se ha dividido en dos grandes ramas: la Estadística Descriptiva y la Inferencial.
Estadística Descriptiva: consiste sobre todo en la presentación de datos en forma de tablas y gráficas. Esta comprende cualquier actividad relacionada con los datos y está diseñada para resumir o describir los mismos sin factores pertinentes adicionales; esto es, sin intentar inferir nada que vaya más allá de los datos, como tales, es decir, únicamente los adquiere, los recopila y los organiza. Estadística Inferencial: se deriva de muestras, de observaciones hechas sólo acerca de una parte de un conjunto numeroso de elementos y esto implica que su análisis requiere de generalizaciones que van más allá de los datos. La estadística inferencial simplemente es el procedimiento por medio del cual se llega a las inferencias acerca de una población base en los resultados obtenidos de una muestra extraída de la población, es decir, la Estadística Inferencial investiga o analiza una población partiendo de una toma de muestra.

VARIABLES DISCRETAS Y CONTINUAS

En líneas anteriores se ha señalado que el objeto de estudio de la Estadística son las poblaciones y que estas están formadas por entes o elementos. El número total de los mismos determina el tamaño de la población. Para estudiar una población, lo primero que debe hacerse es observarla de alguna de las formas que ya se ha señalado en las líneas anteriores. Pero observar una población es equivalente a observar sus elementos. Ahora bien, esos elementos poseen una serie de características que son las que realmente se observan. Por ejemplo, el conjunto de todas las empresas industriales radicadas en España constituyen una población. Los elementos de esa población son las empresas. Pero una empresa no se observa en abstracto. Lo que realmente tiene interés son las distintas características de esas empresas, como, por ejemplo, el número de empleados, el volumen de ventas, los costos salariales, los gastos en publicidad, los beneficios de las mismas, la naturaleza de los productos que fabrican, etc.
A todas estas características de los elementos de una población se les conoce de forma genérica como caracteres. Estos últimos, según su naturaleza, pueden ser de tipo cuantitativo o cualitativo. Para el ejemplo anterior, serían caracteres cuantitativos “el número de empleados”, “el volumen de ventas”, “los costos salariales”, “los gastos en publicidad”, “los beneficios de las mismas”, etc., mientras que sería cualitativo “la naturaleza de los productos que fabrican”. Hay que señalar que, en general, cualquier carácter de tipo cuantitativo se puede ofrecer en términos cualitativos. Así, si el número de empleados lo agrupamos en intervalos, se podría hablar de empresas pequeñas, medinas y grandes, siendo ahora el carácter “tamaño de la empresa” de naturaleza cualitativa. De manera similar se podría proceder con los demás. Pero en estadística es más habitual hablar de variables que de caracteres cuantitativos y de atributos en lugar de caracteres cualitativos. Las variables son susceptibles de medirse en términos cuantitativos y a cada una de esas posibles mediciones o realizaciones se les conoce como valores, datos u observaciones.
A su vez, en función del número posible de valores que tome una variable, a las mismas se les puede clasificar en discretas y continuas. Serán discretas cuando el número de valores sea finito o infinito numerable, mientras que una variable será continua cuando el número de sus valores sea infinito no numerable. En los casos en los que las variables toman infinitos valores, la práctica habitual es agruparlos en intervalos, como se muestra en las Tabla 1, para variable continua, y en la Tabla 2 para discreta.
Variable discreta, es aquella que entre dos valores próximos puede tomar a un número finito de valores, es decir, es aquella que contiene saltos entre un número y otro (1, 2, 3, 4, etc.), por ejemplo: el número de miembros de una familia, el de obreros de una fábrica, el de alumnos de la universidad, etc.
Variable continúa, es la que puede tomar infinitos valores de un intervalo, es decir, es aquella que no contiene saltos (1.1, 1.2, 1.3, 1.4, etc.) En muchas ocasiones la diferencia es más teórica que práctica, ya que los aparatos de medida dificultan que puedan existir todos los valores del intervalo. Ejemplos, peso, estatura, distancias, etc.
La variable se denota por las mayúsculas de letras finales del alfabeto castellano. A su vez cada una de estas variables puede tomar distintos valores, colocando un subíndice, que indica el orden.
X = (X1, X2,...... Xn)

FUENTE DE DATOS

En los apartados anteriores se ha señalado que el objetivo de la Estadística es el estudio de los fenómenos de masas. Pero ello requiere el manejo de una información numérica amplia. La cuestión inmediata que surge es saber a dónde se puede recurrir para encontrar esa información necesaria y sin la cual el análisis estadístico no se puede realizar. En definitiva, se trata de conocer las fuentes que suministran información de carácter estadístico. Estas fuentes son susceptibles de clasificarse según distintos criterios. Atendiendo al agente que elabore esa información, la misma puede agruparse en endógena y exógena. La primera sería la que elabora el propio investigador. En este caso, la operación estadística conducente a recabar los datos necesarios para la realización del análisis estadístico se supone que la lleva a cabo el propio investigador. Será quien se encargue de observar los distintos caracteres, cuantitativos o cualitativos, relevantes de los elementos de una población. El resultado será una base de datos, obtenida mediante una muestra, o cualquiera de los otros procedimientos indicados con anterioridad, que permitirá el correspondiente análisis estadístico.
Esta situación se da cuando no existe fuente alternativa exógena capaz de facilitar esa información. Pero ¿qué se entiende por fuente exógena? En general, la podemos definir como aquella cuyo objeto principal es la obtención de información estadística pero que no actúa como usuaria, es decir, no es elaborada por el propio investigador.
Las fuentes exógenas son múltiples y a su vez se clasifican en dos categorías distintas. Por un lado están las fuentes oficiales o públicas, en el caso de México, un ejemplo claro es el INEGI (Instituto Nacional de Estadística y Geografía) y, por otro, las privadas (consultorias). De todas ellas las que generan mayor volumen de información son las primeras, es decir, las oficiales o públicas. Estas últimas se pueden clasificar, de acuerdo al ámbito espacial en que desarrollan sus competencias en materia estadística.

LA ESTADÍSTICA EN LA INVESTIGACIÓN

Método Estadístico
El conjunto de los métodos que se utilizan para medir las características de la información, para resumir los valores individuales, y para analizar los datos a fin de extraerles el máximo de información, es lo que se llama métodos estadísticos. Los métodos de análisis para la información cuantitativa se pueden dividir en los siguientes seis pasos:
1. Definición del problema.
2. Recopilación de la información existente.
3. Obtención de información original.
4. Clasificación.
5. Presentación.
6. Análisis.

Errores Estadísticos Comunes
Al momento de recopilar los datos que serán procesados es susceptible cometer errores así como durante los cómputos de los mismos. No obstante, hay otros errores que no tienen que ver con la digitación y que no son tan fácilmente identificables.
Algunos de estos errores son:
Sesgo: Es imposible ser completamente objetivo o no tener ideas preconcebidas antes de comenzar a estudiar un problema, y existen muchas maneras en que una perspectiva o estado mental pueda influir en la recopilación y en el análisis de la información. En estos casos se dice que hay un sesgo cuando el individuo da mayor peso a los datos que apoyan su opinión que a aquellos que la contradicen. Un
caso extremo de sesgo sería la situación donde primero se toma una decisión y después se utiliza el análisis estadístico para justificar la decisión ya tomada. Datos no comparables: el establecer comparaciones es una de las partes más importantes del análisis estadístico, pero es extremadamente importante que tales comparaciones se hagan entre datos que sean comparables. Proyección descuidada de tendencias: la proyección simplista de tendencias pasadas hacia el futuro es uno de los errores que más ha desacreditado el uso del análisis estadístico. Muestreo Incorrecto: en la mayoría de los estudios sucede que el volumen de información disponible es tan inmenso que se hace necesario estudiar muestras, para derivar conclusiones acerca de la población a que pertenece la muestra. Si la muestra se selecciona correctamente, tendrá básicamente las mismas propiedades que la población de la cual fue extraída; pero si el muestreo se realiza incorrectamente, entonces puede suceder que los resultados no signifiquen nada.